3x^2+10=7x^2-26

Simple and best practice solution for 3x^2+10=7x^2-26 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+10=7x^2-26 equation:



3x^2+10=7x^2-26
We move all terms to the left:
3x^2+10-(7x^2-26)=0
We get rid of parentheses
3x^2-7x^2+26+10=0
We add all the numbers together, and all the variables
-4x^2+36=0
a = -4; b = 0; c = +36;
Δ = b2-4ac
Δ = 02-4·(-4)·36
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-4}=\frac{-24}{-8} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-4}=\frac{24}{-8} =-3 $

See similar equations:

| -6(8-3m)+5=83 | | 3x+7=-3(4x-1) | | 6x-49=180 | | 4p-8=-2p-8 | | 1/3(18x-6)=-5/6(12-6x) | | x+8.5=16.5 | | X+3x-10+3(56-x)=180 | | 5x=x+6+6 | | 3x2-6x-20=0 | | x+x+13+x+11=180 | | 8+x+7=4x | | 3x-10+5x-40=4x+50 | | 2e-3(-6)=24 | | -3(v-14)+17=17 | | 11x=x^2-12 | | -6(w-4)+8w)=2(w+9) | | X/2-7=2x-22 | | -3/4(-4x+8)=9 | | 3x/4+12=2x+2 | | 2x+5x+x=x+3x+50 | | X+3x+50=180 | | 0.07(3t-4)=0.21(t+2)-0.70 | | 9(2n+5)=6(8n+2)+6 | | 4x/2=3x-5 | | 20+4c=10-6c | | 2x/2+4=2x-3 | | 6(2n+4)=6(5n+9)8 | | 6(2n+5)=7(8n+9)+5 | | 62+7x+14+15x-4=180 | | 2x+5x+x=3x+50 | | 35x+25=4(7x+6)+7x+1 | | 2/3x+8=-25 |

Equations solver categories